
T-DLA: An Open-source Deep Learning Accelerator
for Ternarized DNN Models on Embedded FPGA

Yao Chen1, Kai Zhang1,2, Cheng Gong2, Cong Hao3, Xiaofan Zhang3, Tao Li2, Deming Chen3
1Advanced Digital Sciences Center, Singapore, 2Nankai University, Tianjin, China

3University of Illinois at Urbana-Champaign, IL, USA
yao.chen@adsc-create.edu.sg, {kai.zhang,cheng-gong}@mail.nankai.edu.cn

litao@nankai.edu.cn,{congh, xiaofan3, dchen}@illinois.edu

Abstract—Deep Neural Networks (DNNs) have become promis-
ing solutions for data analysis especially for raw data processing
from sensors. However, using DNN-based approaches can easily
introduce huge demands of computation and memory consump-
tion, which may not be feasible for direct deployment onto the
Internet of Thing (IoT) devices, since they have strict constraints
on hardware resources, power budgets, response latency, and
manufacturing cost. To bring DNNs into IoT devices, embedded
FPGA can be one of the most suitable candidates by providing
better energy efficiency than GPU and CPU based solutions,
and higher flexibility than ASICs. In this paper, we propose
a systematic solution to deploy DNNs on embedded FPGAs,
which includes a ternarized hardware Deep Learning Accel-
erator (T-DLA), and a framework for ternary neural network
(TNN) training. T-DLA is a highly optimized hardware unit in
FPGA specializing in accelerating the TNNs, while the proposed
framework can significantly compress the DNN parameters down
to two bits with little accuracy drop. Results show that our
training framework can compress the DNN up to 14.14× while
maintaining nearly the same accuracy compared to the floating
point version. By illustrating our proposed design techniques,
the T-DLA can deliver up to 0.4TOPS with 2.576W power
consumption, showing 873.6× and 5.1× higher energy efficiency
(fps/W) on ImageNet with Resnet-18 model comparing to Xeon
E5-2630 CPU and Nvidia 1080 Ti GPU. To the best of our
knowledge, this is the first instruction-based highly efficient
ternary DLA design reported from the literature.

I. INTRODUCTION

Deep neural networks (DNNs) are becoming attractive solu-
tions for many machine learning applications. Their capability
of effective feature extraction for raw data from sensors on
IoT devices is a big advantage of DNN based algorithms.
Meanwhile, with the increase of the size and complexity of
neural networks, deploying a DNN with a large number of
parameters and complex data transmission on a small and low
power device becomes increasingly difficult [1], [2].

Generally, floating point data are adopted to ensure the
accuracy of the data representation during the processes of
DNN training. During DNN inference, however, it shows
that accuracy is less sensitive to data representation [3], [4].
In order to implement DNNs on IoT devices, a number of
DNN model compression methods are proposed [1], [5], [6].
DNN model compression with pruning is an effective way to
reduce the number of weights in a DNN model as well as the
data bit-width in a DNN model, with an extreme case that
discretized the weights down to binary. These methods can
dramatically reduce the network size as well as number of the
multiplications in the kernel computation. However, they also

can cause significant degradation on the accuracy of the output
of the models especially when the data in the DNN models
are binarized. In this work, we focus on DNNs with ternarized
weights. Our hypothesis is that ternarized DNNs have a great
potential to maintain high accuracy while still being compact
in size with high execution speed and energy efficiency.

Besides general purpose processors (GPP) and digital signal
processors (DSP), FPGA is becoming an attractive platform to
achieve efficient DNN processing [7]–[9]. Especially modern
SoC FPGA contains on-chip low power processor and suf-
ficient interfaces that support the widely used IoT sensors.
FPGA also provides the flexibility to be configured as Domain
Specific Architecture (DSA) design that enables realization of
diverse DNN models for applications. Several design flows for
embedded FPGA based Deep Learning Accelerator (DLA) are
proposed, such as TVM and CHaiDNN [10], [11]. However,
the advantage of the finer granularity logic control of FPGA
and low bitwidth is not well explored in these previous works.
To enable a low-bitwidth DLA design while maintaining high
accuracy of the DNN models running on the DLA would
require a deep fusion of the DNN training with the specific
DLA design, which in general can be a very challenging task.

In this paper, we propose a highly efficient T-DLA es-
pecially designed for terarized DNN models, together with
a DNN model training framework for a complete system
solution. Our solution provides training and quantization of
the input DNN model into ternarized weights with quantized
activations, and also provides a specific DLA for the execution
on the targeted embedded FPGA platform. To summarize, the
detailed contributions of this work are:

• Caffe based open-source flow for scalable and effective co-
efficient ternarization and quantization for DNN training
which achieves floating-point free DNN inference.

• A fully customizable and inner module pipelined DLA
architecture with specialized instruction set for DNN ac-
celeration on embedded FPGAs.

• Multi-clock domain and pipelined adder tree design to
further explore the low-power consumption and high energy-
efficiency potential of the embedded FPGA platform.

• The T-DLA system delivers up to 0.4TOPS with 2.576W
power consumption and shows 873.6× and 5.1× energy
efficiency on ImageNet with the Resnet-18 model comparing
to Xeon E5-2630 CPU and Nvidia 1080 Ti GPU.

The rest of this paper is organized as follows. Section II

presents the ternary quantization method during DNN model
training. Section III explains the overall T-DLA architecture
and its individual modules in detail. Section IV shows the ex-
perimental results and followed by conclusions in Section V.

II. TRAINING FOR TERNARY QUANTIZATION

The design of a high performance and energy-efficiency
DNN accelerating system involves both model training and
hardware implementation [4]. In order to achieve a high
performance system with constrained hardware resource, we
start from the training of the DNN model but with careful
consideration of the FPGA implementation requirements. One
key advantage of FPGA is its full support of flexible bit-
width control and customization. Thus, during the training,
we compress all the weights of convolutional layers and
as much as the fully connected layers in the model into
ternary representation, and quantize all the other parameters
for the rest of the layers or operations into fixed bit-width
representations to achieve a low bitwidth and floating-point
free inference of the DNN model.

A. Weight Approximation

We adopt the same threshold-based weight approximation
method proposed in [5] to compress the weight wf from
floating point to ternary weight wt({−α, 0, α}) with a scaling
factor α:

wt =

⎧⎪⎨
⎪⎩
α : wf > Δ

0 : |wf | ≤ Δ

−α : wf < −Δ

(1)

where ±Δ are symmetric thresholds. The value of Δ and α
are approximated as:

ternarize :

{
Δ = 0.7E(|wf |)
α = Ei∈{i||wf (i)|>Δ}(|wf |) (2)

B. Scale factor and Activation Quantification

Although the existing work has trained the weights of
convolutional layers into ternary, there is still a requirement
of α value to be floating point to remain the accuracy of the
processing results [5]. In order to achieve a floating point free
implementation of the DNN model on IoT devices, we propose
a dynamic quantification method to compress the scaling factor
and the output of activation functions into lower bitwidth.

Any floating point number f can be expressed as:

f = (−1)s · 2−p ·Q (3)

where s is the sign, p is the resolution of the data, and Q is
the quantized integer value. With a sufficient number of bits,
the floating point number f can be represented by an integer
Q and its point position p and sign s precisely.

In fact, the number of bits is always limited. In order to
minimize the loss, it is most desirable to retain the front
bits. Especially for neural networks, larger values play a more
important role than smaller ones [1], [12], so it is appropriate
to maintain the front bits:{

p = �log2(|f |)� − (b− 1)

Q = Round(f
2p)

(4)

where b is the maximum number of bits that are limited, and
Round() is the rounding function. As a single floating point
value, α in Eq. (2) can be quantized according to Eq. (4).

The output of the activation layer is an array, denoted as A.
It is necessary to find a shared point position p that minimizes
the total quantization error:

p∗, Q∗ = argmin
p,Q

‖Q−A‖k2 (5)

where k is a positive integer, and the cost function in Eq. (5)
is designed to illustrate that larger values in the output data
are more important and will be kept. Show as Eq. (6), the bit
location stands for the most value that should be reserved.

quantize :

{
p = �log2(max(|A|))� − (b− 1)

Q = Round(A
2p)

(6)

C. Model Training

In forward propagation of layer l, we first ternarize wf
l to

wt
l and quantize αl at the same time. Then, we use wt and the

quantized activation Ql−1 of the previous layer to calculate the
activation value Al. Finally, we get the quantized activation Ql

of the current layer from Al and forward it to the next layer.
During back propagation, because the values from Eq. (2)

are not differentiable, derivatives of wt are computed instead,
yielding the identity function:

g =
∂J(wt, Q)

∂wt
=

∂J(wt, Q)

∂wf
(7)

To deploy a DNN model on any device for inference, we
only need to save the ternary-valued weights and the scaling
factors together with other quantized network parameters.

III. T-DLA SYSTEM DESIGN

To optimally explore the computation capacity with the
trained ternary weighted DNN model, we propose T-DLA,
a systematic solution in consideration of both performance
and resource limitation, to efficiently execute the computation
intensive operations with ternarized weights in DNN inference.
The key features of the proposed T-DLA system are:

• Pre-defined customizable high performance components that
execute based on the specialized instruction set to support
various operations for an DNN model.

• Contains instruction controlled variable-length line buffer
for lower latency.

• A highly optimized computation unit which contains a
ternary computation array and a fully pipelined adder tree.

• All the components inside the accelerator are fully pipelined.

In order to provide enough flexibility for system integration,
the T-DLA is designed with memory interfaces for both data
and instructions, which eases the control and integration with
an embedded ARM core through a general memory mapped
bus system.

Line
buf

Com
Array

Accelerator

System Bus

Control Unit

Act/
pool OutAdder

Tree

Feature mem

Feature mem

Proce-
ssor

Memory

D
M

A

Clock domain 1

Clock domain 2

PS PL

FIFO Array

Fig. 1: Accelerator and system architecture.

A. Overall Architecture

As shown in Figure 1, the T-DLA system is constructed
with 1) a memory sub-system that contains a feature memory
and line buffer, 2) a computation core that is constructed with
an computation array and an adder tree, 3) an activation and
pooling logic unit, 4) an output transfer module and 5) the
corresponding on-the-fly control unit. The connection to the
processor is presented in this figure to show the flexibility
of integration of our T-DLA with embedded processors. The
input and output data ports are mapped to different address
space in the bus system and the DMA through the bus system
is enabled. The accelerator works in an instruction mode and
receives instructions from its instruction register in the control
unit. The input and output feature interfaces are designed
as general bus interfaces that could be easily connected to
a system bus. The DMA is controlled by the embedded
processor core to provide control flexibility at runtime.
B. Memory Sub-system

The T-DLA contains two levels of cache-like memories:
feature memory for the feature data storage, and a flexible
variable-length line buffer to feed the feature data to the
computational array in parallel.

a) Feature memory: The T-DLA has its own local feature
memory to enable the data to be streamed to it from the
external memory and temporarily store the input and output
feature data. Both the input and output data transfers are
double buffered. The feature memory is designed using dual-
port BRAM. The depth of the BRAM is set as a parameter in
the feature memory template and is configured according to
the on-chip memory capacity during the system integration.

b) Variable-length line buffer: Due to the computation
pattern of convolution, the data in the feature memory need to
be provided to the computation array in a shifted and paralleled
manner. Line-buffer is a general way to read and provide the
data to the paralleled computation module. However, because
of the various sizes of kernels and output features that are
required by a single CNN, a simple line buffer with a fixed
output size and buffer depth could not satisfy the requirement
of different layers. To solve this problem, the line buffer unit
is designed with a variable kernel size Klbuf and variable
depth Dlbuf which are controlled by the kernel size logic and
buffer depth logic, as shown in Figure 2. The control logic is
implemented as a switch. With the value passed to the control
register, the corresponding shift lines are connected and output
channels are selected. The maximum supported kernel size LK

to computation
array

pixels from
feature memory

depth ctrlkernel ctrl

Data_width

Data_width*Kernel

Data_width Depth RegKer. Reg

Fig. 2: Variable-length line buffer.

Inversion
0

weight

Feature_in to
adder
tree

2 bits
Data_width

Fig. 3: Ternary computation
unit.

���

���

���
���

���

Adder tree

SIMD DSP

���
���

Fig. 4: Adder tree.

Compare
unit

0

0

pooling
buffer compare tree

Relu unit

Pooling unit

Fig. 5: Relu and pooling
unit.

and depth of the line buffer LD are set to be fixed and are
configured with the consideration of both the on-chip resource
capacity and the input DNN model.
C. Computation Modules

The computation of convolution and pooling in our T-DLA
are illustrated by 1) a ternary computation array, 2) an adder
tree, 3) an activation unit and 4) a pooling module. The control
logic extracts the instruction and control the listed modules.

1) Ternary computation array: With our TNN model train-
ing, the weights are represented with 2 bits using two’s com-
plement encoding, thus the computation unit in the convolution
layer is simplified to a selection and inversion logic as shown
in Figure 3. Due to the simplified logic, the number of the
LUT and FF consumption for each computation module is the
same and formulated as Equ. 8. The required maximum feature
data width Dw is extracted during the training in Section II.

NLUT = NFF = Dw (8)
The entire computation array is constructed by a group

of computation modules. Benefiting from the resource effi-
ciency of the computation unit, we extend the parallelism on
input channel, output channel and kernel dimension, hence
the computation array is constructed by Tn × Tm × L2

K

computation units, which could process these numbers of input
data simultaneously. Tn, Tm represents the maximum input
and output channel number of our T-DLA for a single call of
the computation array. The configurations of Tn, Tm, LK are

based on the on-chip resource availability. The data processing
in the computation array takes place in a single clock cycle
then all the results are output to the following adder tree unit.

2) Pipelined adder tree: With the previous computation
array, Tn × Tm × L2

K number of processed data are provided
to the following adder tree in every clock cycle. Because the
computation array is constructed with the ternary computation
units which only consume LUTs and FFs. This allows us to use
DSP to construct the adder tree. In order to process the data
provided from the computation array in a streaming manner,
two methods have been utilized to the DSPs in the adder tree:
1) input data squeeze and 2) independent clock-domain setting.

a) Data squeeze: A DSP in FPGA chip could be con-
figured to Single Instruction Multiple Data (SIMD) mode for
addition operation. The input/output of modern DSPs in an
FPGA chip can be split into smaller data segments in SIMD
mode where the internal carry propagation between segments
is blocked to ensure independent operation for all segments.
Our TNN training process allows us to constrain the features
to be less than 12 bits. In order to incorporate the advantage of
our TNN-specific training solution, we split the original 48 bits
input of the DSP into 4 independent accumulation channels
to achieve a higher throughput for the data processing, as is
shown in Figure 4. Thereby, a single DSP completes addition
operations for 8 pieces of input data and provides 4 outputs.
With the advantage of SIMD mode, the DSP provides output
results in every single clock cycle after the internal register
lines are fully filled up.

b) Clock-independent design: Generally, DSP units
could be configured to a higher clock frequency compared to
other resources such as IO and LUT . In order to fully explore
the efficiency of the DSP, the adder tree unit is designed with a
separate clock input. Thereby, the input and output of the adder
tree are buffered with asynchronous FIFO arrays. The FIFOs
in the input FIFO array for the adder tree are configured with a
slower input clock but wider input data width, and with a faster
output clock with narrower output data width. The FIFOs in
the output FIFO array are configured as the opposite. In this
way, the throughput of the input/output FIFOs can be balanced
and the DSP units can run at a high clock frequency. The
number of the FIFOs and their depths are configured during
the system integration based on the final implementation clock
frequency and the on-chip resource limitation. Our clock-
independent design could enable the DSPs to operate at a
higher frequency and throughput without the impact of other
slower logic components.

3) Activation and pooling unit: A ReLU based activation
module applies the non-linear activation function to the output
data from the previous layer. A Max Pooling module is
designed to utilize buffers to apply a specific 2 × 2 sliding
window to the input data and outputs the maximum value.
The activation and pooling modules are shown in Figure 5.

D. On-the-fly Control Unit and Instruction Set

In each data processing stage, the control unit decodes
the input instruction, generates the control signals and passes

TABLE I: Instruction word
Bits 63:57 56:49 48:47

Description Reserved Feature size 48 - out buffer sel.
47 - in buffer sel.

Bits 46:4 3:0

Description

46:31 - w mem addr 3 - Output
30:23 - s mem addr 2 - Activation
22:7 - cycle counter 1 - Pooling
6:4 - kernel size 0 - line buffer

the variables in the instruction word to each of the variable
registers for different modules. The control signals to different
modules are listed as follows.
• In/out buffer select indicates the current activated buffer

for the input/output feature buffer.
• Compute enable is the start signal for the line buffer to

start reading data from the feature memory and stream the
data to the computation array.

• Activation/pooling enable/bypass is used to enable/bypass
the activation/pooling unit.

• Output select indicates the output data is available and
starts the data output logic to transfer data out from the
buffer of the T-DLA.
The computation array and adder tree are driven by the

input data from the line buffer, so there is no control signals
required by the computation array and the adder tree.

To ease the task scheduling for the application running on
the embedded processor, the T-DLA is designed to operate
based on a small set of specialized instructions. Corresponding
control signals and variables for different function units in
the accelerator are generated and transferred based on the
instruction opcode. They are designed to be as simple as
possible but are able to express the operations in a large
varieties of CNNs. Each instruction is defined as a 64-bit word
and the format is shown in Table I. The detailed control bits
and variables are customized based on the input DNN model
according to the accelerator tasks.

E. Inter Accelerator Pipeline

The feature memory is double buffered to enable an efficient
data transfer from the host to the accelerator. The computation
array and the adder tree are driven by the data from the
line buffer. It takes only one clock cycle for the data to
be processed and sent to the input FIFO array of the adder
tree, which is the data input stage. The output FIFO array of
the adder tree buffers the results for the following modules
to process. The following activation and pooling unit also
contains their own buffers to store the output and the start of
the unit is controlled by the status of the output FIFO of adder
tree, which is the activation and pooling stage. The output
unit processes the output function when the output signal is
enabled, which is the data output stage. The three stages in
the accelerator are designed to run in a pipelined manner with
properly pre-defined buffer sizes.

IV. EVALUATIONS
To evaluate the effectiveness of our proposed solution, we

provide the detailed evaluation results from the DNN model
training to the final system implementation.

A. Experimental Settings
We choose the most popular and representative datasets for

evaluation: MNIST, Cifar10 and ImageNet. The corresponding
DNN models that are trained and tested on these data sets are
Lenet-5, Cifarnet, a VGG-like network model that contains 64
channels [13] and Resnet-18. For fair comparison, we follow
the same training and testing processes. The ternary training
and quantization algorithms are implemented in C++ and
merged into the original Caffe [14] flow. The measurement of
accuracy and frame per second (fps) of the original Caffemodel
is on a server with two Intel Xeon E5-2630 v3 CPU and
an Nvidia 1080 Ti GPU. The accelerator system for the
DNN models are implemented on a Xilinx Zedboard FPGA
platform that is suitable for edge applications with very limited
logic resources. It is equiped with a Xilinx Zynq-7000 SoC
chip XC7Z020-CLG484-1 that contains an on-chip dual-core
ARM Cortex A9 together with 53.2K LUTs, 106.4K FFs,
140 BRAM blocks with 36Kb and 220 DSPs. Vivado System
Design Suite 2018.1 is used for system implementation.
B. Training Performance

We first evaluate our training flow in terms of classification
accuracy and model size reduction, and compare the results to
the original 32-bit floating point ones.

1) Classification accuracy: The classification accuracy of
our tested models on different data sets are shown in Table II.
For simplicity, we only show the top-1 accuracy. Comparing to
floating point (Floating in the Table), the classification accu-
racy under ternary weight and quantified scale and activation
shows a very small degradation. We also show comparable
accuracy comparing to several recent works [4], [5], in which
only weights are ternarized but the quantization of scale
factor and activation are not applied. Our proposed method
shows better accuracy for Resnet-18 on ImageNet data set,
which is a larger network and a larger data set with higher
image resolution. This result demonstrates the scalability and
stability of our training method. Our training and quantization
enable the DNN model to process the computation intensive
convolution operations with multiplication free logic while
maintaining the classification accuracy.

2) Model size reduction: Our method also greatly reduces
the memory footprint (Mem. Reduc.) of the DNN models,
as shown in Table II. Ternary weight occupies only 2 bits
but the original floating point data requires 32 bits memory
space. Our training solution enables the original DNN models
to be compressed into much smaller size, and therefore they
could be implemented on IoT devices with limited storage
capacity. As shown in Table II, for convolution layers, our
training method could compress the parameter size to the
theoretical limit (16× reduction). For fully connected (FC)
layers, it is observed in the experiments that the last FC layer
greatly affects the accuracy, so we apply 12-bit fixed point
quantization on the last FC layer instead of ternarization.
Hence, the networks with less or no FC layers have better
compression rate, such as Cifarnet and Resnet-18. Our training
solution reduces up to 92.93% (14.14×) of the size of Resnet-
18 with floating point data. The quantified scale and activation

TABLE II: Training Evaluations

Dataset MNIST CIFAR-10 CIFAR-10 ImageNet
Model Lenet-5 Cifarnet VGG-like Resnet-18

Top-1 Classification Accuracy
Floating 99.41 80.54 89.24 65.44
Ours 99.2 78.7 89.08 65.6
[4] 98.33 - 87.89 -
[5] 99.35 - 92.56 61.8

Model Size
Param. Total (M) 0.43 0.279 5.35 11.69
Param. Conv (M) 0.025 0.258 1.114 11.177
Floating (MB) 1.644 1.065 20.408 44.594
Ours (MB) 0.393 0.081 4.284 3.154
Mem.Reduc.(%) 76.09 92.39 79.01 92.93

further reduces the bitwidth of the feature data. As a result,
the ternary weights together with the quantization method also
reduces the data transmission latency and power consumption
during the model inference due to reduced size of both the
weight and the feature data.
C. Hardware Resource and Power Evaluation

After the DNN model is trained, we configure the T-DLA
system to execute model inferences. Two representative accel-
erator configurations and the corresponding system resource
utilization, power consumption and execution performance
are shown in Table III. We only show the most important
accelerator configuration parameters (Acc. Config. Par.) which
are Tn, Tm, LK , LD and the quantized feature data width Dw

as they have been mentioned in the above sections. The feature
data width of the model is decided during the training process
and the accelerator could be configured based on it. We only
show the resource utilization of the feature data customized as
12-bit and 8-bit for the accelerator to simplify the presentation.

As is shown in Table III, using parameterized component
template, our T-DLA could be easily customized by different
configuration parameters. The LUT resource is dominated
by the feature data width Dw since our computation array
constructed with ternary computation unit is the most LUT
and FF consuming module and each of them costs Dw

numbers of LUT and FF . The adder tree is the most critical
component that requires DSP resources. When we scale up
the maximum output channel number to 16, 91.82% of the
on-chip DSP s are utilized. Our targeted platform supports
a highest frequency at 250MHz for the customizable logic
including DSPs. Our design could fully utilize it with different
customizations without any timing issues by taking advantage
of our ternary computation array and the clock independent
design for the DSPs, hence fully boosting the execution
capacity of the platform.

Although we test different customizations on the same
platform, the T-DLA could be easily migrated to different
platforms with different resource capacities. The T-DLA could
scale to different sizes based on the resource capacity of the
platform, and the peak performance is decided by both the
supported frequency and the resource capacity of the platform.

D. Performance Comparison

We compare the performance of our system in terms of
accuracy, frame per second and power consumption to other

TABLE III: Accelerator Resource and Performance
Acc. Config. Par. < Tn, Tm, LK , LD, Dw > < 4, 8, 5, 32, 12 > < 4, 16, 5, 32, 8 >
Res. Util. < LUT/FF/BRAM/DSP >(%) 78.71 / 37.76 / 75.00 / 49.55 71.28 / 47.47 / 68.93 / 91.82
Clock Freq. Logic / Adder (MHz) 125 / 250 125 / 250
Power(Watt) 2.276 2.576
Peak Performance (GOPS) 200 400
DNN Model Lenet-5 Cifarnet VGG-like Resnet-18 Lenet-5 Cifarnet VGG-like Resnet-18
fps (images/S) 53498.8 8501.5 230 10.3 62051.1 15792.8 457 20.48
uJ/image 42.5 267.7 9.9× 103 0.22× 106 41.5 163.1 5.6× 103 0.13× 106

TABLE IV: Comparison with State-of-the-art implementations.
Dataset Design Model Accuracy(%) Fea. quan. W. quan. fps Power(W) fps/W platform
MNIST [15] MFC-max 97.69(2.31) 1bit 1bit 6238000 11.3 552000 ZC706
MNIST [16] Lenet-5 - 8bit 3bit 70000 4.98 1405.6 ZC706
MNIST Ours Lenet-5 99.2 8bit 2bit 62051.1 2.576 24088.2 Zedboard
CIFAR 10 [15] VGG-like 80.1(19.9) 24bit 1bit 21900 3.6 6080 ZC706
CIFAR 10 [17] VGG-like 81.8(18.2) 1bit 1bit 420 2.3 182.6 Zedboard
CIFAR 10 [13] VGG-like 86.71(13.29) 8bit 2bit 27043 6.8 3976 VC709
CIFAR 10 [18] VGG-like 88.68(11.32) 1bit 1bit 168 4.7 35.8 Zedboard
CIFAR 10 Ours VGG-like 89.08 8bit 2bit 457 2.576 177.4 Zedboard
CIFAR 10 Ours Cifarnet 78.7 8bit 2bit 15792.8 2.576 6130.7 Zedboard
ImageNet [5] Resnet-18 65.44 FP32 FP32 1.545 85*2 0.0091 Xeon E5-2630 v3
ImageNet [5] Resnet-18 65.44 FP32 FP32 387.597 250 1.55 Nvidia 1080Ti
ImageNet Ours Resnet-18 65.6 8bit 2bit 20.48 2.576 7.95 Zedboard

designs either with the same DNN model or on the same
data set. The results are shown in Table IV. For MNIST
data set, the design in [15] shows better frame per second
(fps) and fps per Watt (fps/W) since the DNN model they
implemented is relatively simple and their targeted ZC706
platform has almost 4× more resources in all aspects com-
pared to ours. However, we outperform a similar design [16]
with 3-bit weight quantization on the same platform by 17×
in terms of fps/W . On CIFAR10 data set, we report 2
different network models, VGG-like and Cifarnet. Our design
shows dominating accuracy advantage among all the VGG-like
models. Our Cifarnet implementation shows the best results
in terms of fps and fps/W . On ImageNet data set, we
could not find an implementation of Resnet-18 on FPGA, so
we directly compare the results of our system to the floating
point version on our servers. Our acceleration system shows
a longer processing latency than GPU but outperforms CPU
by 9.2×. Our accelerator shows better fps/W comparing to
CPU and GPU implementations, reaching 873.6× and 5.13×,
respectively.

V. CONCLUSION AND FUTURE WORK

Our T-DLA solution is advantageous in terms of both main-
taining high accuracy and high inference performance when
compared to other designs. In the future, dynamic fixed point
quantization will also be considered. We have implemented
our T-DLA with an RTL library which could be synthesized
for both FPGA and ASIC. Exploring ASIC implementations
is a future task. Finally, our Caffe based DNN model training
flow with ternarization and the T-DLA hardware designs will
be open-sourced in the near future. Our current release could
be found at https://github.com/microideax/T-DLA.git.

VI. ACKNOWLEDGMENT

This work is partly supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its Cam-

pus for Research Excellence and Technological Enterprise
(CREATE) programme, the IBM-Illinois Center for Cognitive
Computing System Research (C3SR) - a research collaboration
as part of IBM AI Horizons Network. It is also partially
supported by the National Natural Science Foundation of
China (61872200) and the Natural Science Foundation of
Tianjin (18YFYZCG00060).

REFERENCES

[1] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv, 2015.

[2] X. Zhang et al., “Machine learning on FPGAs to face the IoT revolu-
tion,” in ICCAD, 2017.

[3] J. Wang et al., “Design flow of accelerating hybrid extremely low bit-
width neural network in embedded FPGA,” in FPL, 2018.

[4] H. Alemdar et al., “Ternary neural networks for resource-efficient AI
applications,” in IJCNN, May 2017.

[5] F. Li and B. Liu, “Ternary weight networks,” arXiv, 2016.
[6] M. Courbariaux et al., “Binarynet: training deep neural networks with

weights and activations constrained to +1 or -1,” arXiv, 2016.
[7] S. Liu et al., “Real-time object tracking system on FPGAs,” in SAAHPC,

2011.
[8] X. Zhang et al., “DNNBuilder: an automated tool for building high-

performance Dnn hardware accelerators for FPGAs,” in ICCAD, 2018.
[9] J. Qiu et al., “Going deeper with embedded FPGA platform for

convolutional neural network,” in FPGA, 2016.
[10] T. Chen et al., “TVM: end-to-end optimization stack for deep learning,”

CoRR, 2018.
[11] Xilinx, “https://github.com/xilinx/chaidnn,” 2018.
[12] S. Han et al., “Learning both weights and connections for efficient neural

network,” in NIPS, 2015.
[13] A. Prost-Boucle et al., “Scalable high-performance architecture for

convolutional ternary neural networks on FPGA,” in FPL, 2017.
[14] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-

ding,” in MM, 2014.
[15] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized

neural network inference,” in FPGA, 2017.
[16] J. Park and W. Sung, “FPGA based implementation of deep neural

networks using on-chip memory only,” CoRR, 2016.
[17] H. Nakahara et al., “A fully connected layer elimination for a binarizec

convolutional neural network on an FPGA,” in FPL, 2017.
[18] R. Zhao et al., “Accelerating binarized convolutional neural networks

with software-programmable FPGAs,” in FPGA, 2017.

