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ABSTRACT

Building a high-performance FPGA accelerator for Deep Neural
Networks (DNNs) often requires RTL programming, hardware ver-
ification, and precise resource allocation, all of which can be time-
consuming and challenging to perform even for seasoned FPGA
developers. To bridge the gap between fast DNN construction in
software (e.g., Caffe, TensorFlow) and slow hardware implementa-
tion, we propose DNNBuilder for building high-performance DNN
hardware accelerators on FPGAs automatically. Novel techniques
are developed to meet the throughput and latency requirements for
both cloud- and edge-devices. A number of novel techniques includ-
ing high-quality RTL neural network components, a fine-grained
layer-based pipeline architecture, and a column-based cache scheme
are developed to boost throughput, reduce latency, and save FPGA
on-chip memory. To address the limited resource challenge, we
design an automatic design space exploration tool to generate op-
timized parallelism guidelines by considering external memory
access bandwidth, data reuse behaviors, FPGA resource availability,
and DNN complexity. DNNBuilder is demonstrated on four DNNs
(Alexnet, ZF, VGG16, and YOLO) on two FPGAs (XC7Z045 and
KU115) corresponding to the edge- and cloud-computing, respec-
tively. The fine-grained layer-based pipeline architecture and the
column-based cache scheme contribute to 7.7x and 43x reduction
of the latency and BRAM utilization compared to conventional
designs. We achieve the best performance (up to 5.15x faster) and
efficiency (up to 5.88x more efficient) compared to published FPGA-
based classification-oriented DNN accelerators for both edge and
cloud computing cases. We reach 4218 GOPS for running object
detection DNN which is the highest throughput reported to the
best of our knowledge. DNNBuilder can provide millisecond-scale
real-time performance for processing HD video input and deliver
higher efficiency (up to 4.35x) than the GPU-based solutions.

1 INTRODUCTION

FPGAs have become promising candidates for DNN implementa-
tions recently [1-7]. FPGAs can be customized to implement DNNs
with improved latency and energy consumption compared to CPU-
and GPU-based designs. Meanwhile, FPGAs offer much more flex-
ibility than ASICs because of their reconfigurable feature. These
characteristics allow FPGAs to satisfy diverse DNN-based applica-
tions in both cloud- and edge-based computing cases. High-end
FPGAs with sufficient logic, computation, and memory resources
can deliver significant concurrent processing abilities for cloud ser-
vices, while embedded FPGAs can provide high energy efficiency
to overcome the power/energy limitations under various edge-
computing scenarios [8].
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Developing DNN designs on FPGAs, however, presents signifi-
cant challenges: the tedious RTL programming, the intricate verifi-
cation problems, and the time-consuming design space exploration
process, all of which often hinder FPGA’s adoption by application
developers. Diverse requirements of applications and targeted FP-
GAs come with completely different computation and memory
resources. Cloud applications require sophisticated resource allo-
cation strategies to accommodate flexible batch-processing and
meet throughput requirements with given FPGAs. Edge applica-
tions usually ask for real-time processing of streaming inputs that
limit the FPGA’s ability to batch the data for increased throughput,
as the additional latency incurred by batch process can exceed what
is allowed by real-time performance requirements. Also, most of
the edge applications require processing high-definition (HD) im-
ages/videos, which generates even higher requirements for feature
map storage and computation power. To address these challenges,
we propose DNNBuilder for building DNN designs on FPGAs. It is
an automated tool flow which can transform DNN designs from
popular deep learning frameworks (such as Caffe, TensorFlow) to
highly optimized board-level FPGA implementations with consid-
erations of available computation units, on-chip/off-chip memory,
and external memory access bandwidth in targeted FPGAs. To sum-
marize, the main contributions of this paper are as follows.

(1) An end-to-end automation tool called DNNBuilder, which
provides an integrated design flow from deep learning frameworks
to board-level FPGA implementations. With DNNBuilder, users are
no longer required to program in RTL or to perform manual re-
source allocation and optimization for deploying DNNs on FPGAs.

(2) A flexible quantization scheme for smooth tradeoffs be-
tween limited resources on FPGAs and desired output accuracy. Our
design supports arbitrary quantization for weights and activations
either within a layer or across layers in DNNs. It also supports
binary and ternary networks.

(3) A fine-grained layer-based pipeline architecture and a
column-based cache scheme can deliver high throughput (even
without batch processing), low startup latency, and low on-chip
memory consumption. With the proposed designs, we reduce 7.7x
latency and 43x BRAM usage than the conventional structure. These
features ensure the millisecond-scale response and HD input sup-
port of our design.

(4) Highly optimized RTL network components that can
be automatically generated for building DNN layers with high
quality. Commonly used loop structures in DNNs are captured by
a parameterized process engine (PE), which can be configured to
deliver the best performance under constraints of given FPGAs.

(5) An automaticresource allocation management that pro-
vides computation and memory resource allocation guidelines across
network layers. It considers the external memory access bandwidth,
data reuse behaviors, computation resource availability, and net-
work complexity.

The rest of the paper is organized as follows. Sec. 2 introduces
the related work while Sec. 3 summarizes the main challenges we



encountered. Sec. 4 and 5 describe the design flow of DNNBuilder
and the architecture of generated accelerators. The resource alloca-
tion scheme is presented in Sec. 6. Sec. 7 shows the experimental
results and Sec. 8 concludes this paper.

2 RELATED WORK

For handling edge applications, a DNN is implemented in [1]
which covers weight quantizations for relaxing the computational
pressure in embedded FPGAs. In [2], the authors integrate conven-
tional and Winograd-based convolution (CONV) for running DNNs
in embedded FPGAs. A framework is proposed in [3] for accelerat-
ing the extreme low bit-width DNNs which supports hybrid quan-
tization to balance the accuracy and throughput performance. To
support cloud services, FPGAs with more computation and memory
resources are deployed. Authors in [4] design a resource allocation
algorithm and hierarchical memory system to reach the minimum
DNN inference latency. In [5], a Winograd-based solution is used
to reduce the required multiplications using the Arria 10 FPGA.
The same FPGA is used in [6] for accelerating the VGG network.
To speedup the CONV, authors in [7] evaluate the Winograd- and
FFT-based algorithms and implement a face recognition accelerator
on FPGA.

Previous literature also focuses on building automation tools
for fast deploying DNNs to FPGAs. The authors in [9] design a
framework with systolic arrays to speedup DNN inference. The
framework in [10] employs an unified RTL design for CONV layers
and runs software in the host CPU to ensure different network
configurations. However, the Fully-connected (FC) layers are not
implemented on FPGA. More frameworks are proposed to auto-
matically map DNNs onto FPGAs using RTL [11, 12] or RTL-HLS
templates [13].

Previous automation tools suffer several drawbacks: 1) relatively
low hardware efficiency, e.g., the use of unified computation units
(e.g., computation engine with fixed size) lowers the chance to
reach the optimal design when compared to the dedicated designs
for different networks, 2) limited scalability for mapping different
networks onto different FPGAs, especially for the embedded FPGAs
with limited computation and memory (including capacity and
bandwidth) resources, and 3) no sufficient design space explorations
integrated in the automation tool.

Our proposed tool can well address these drawbacks and provide
a built-in design space exploration tool for high-performance and
efficient designs. We introduce a fine-grained pipeline structure,
a novel caching scheme between pipeline stages, and highly opti-
mized RTL network layers with arbitrary quantizations to deliver
high throughput, low latency, and desired network accuracy.

3 DESIGN CHALLENGES

The memory requirement and computational complexity of DNNs
are high, which makes their deployment on FPGA a challenging
and time-consuming task. There are two strategies for designing
FPGA-based DNN accelerators: using either a recurrent structure or
a pipeline structure. The former, such as accelerators in [5, 10, 11],
constructs a unified computation unit with nearly full exploitation
of the on-chip resource and shares the same unit among different
DNN layers. For each layer, accelerator needs to handle required
computation and save the intermediate results (feature maps) to
internal (FPGA on-chip) memory or external memory (usually the

DRAM). The latter, such as the accelerator proposed in [14], is a
pipeline implementation in which each neural network layer is
implemented as a separate pipeline stage instantiated on FPGA.

We choose the pipeline structure for our tool based on the fol-
lowing considerations. First, we need to balance the limited on-chip
memory resource with the support of HD inputs. It is difficult to
generate adaptable designs for both edge and cloud devices using
recurrent structure. It requires either high memory bandwidth for
swapping intermediate results to/from external memory (DRAM) or
a large capacity on-chip memory for keeping all the feature maps,
either of which is hard to satisfy in edge-devices. Also, the HD
inputs further aggravate the resource shortage with much larger
feature map generated and required memory footprint. Second, as
an automation tool, DNNBuilder needs to provide flexible support
of various network configurations with different computational
and memory demands. A pipeline structure allows to implement
dedicated design for each layer separately according to its com-
putation and memory demands. In contrast, a recurrent structure
has to choose a computation engine with uniform size, such as
the 256x256 matrix multiplication unit in Google’s TPU [15] or
the three inner-most for-loops of CONV instantiated on FPGA as
the computation engine in [10]. This means that operations in an
incoming neural network need to be transformed (e.g., padding,
matching, or partition) before feeding to the computation engine
which reduces efficiency. Third, a pipeline architecture can well
adapt to the resource allocation guidelines and deliver high through-
put performance for better support of streaming inputs.

To overcome a pipeline’s startup latency (the time between load-
ing the first input at the first pipeline stage and generating the
first output at the last pipeline stage) and large inter-stage cache
overhead, we employ a fine-grained pipeline structure to reduce
the pipeline latency and a column-based cache scheme to lower
the required inter-layer memory space in full support of the HD
inputs. Our design can deliver a millisecond-scale response for HD
image/video inputs, which makes it possible to deploy DNNBuilder
generated DNN accelerators on a latency sensitive system, such as
Advanced Driver Assistance Systems for vehicle, and pedestrian
and obstacle detections.

4 PROPOSED AUTOMATION FLOW

DNNBuilder produces board-level FPGA implementations in
three steps: Design, Generation, and Execution (Fig. 1). After net-
works are determined, RTL codes and corresponding files for run-
ning DNN accelerators on FPGAs can be generated in seconds.

During the Design step, a targeted network is designed and
trained using deep learning frameworks which in general employ
CPUs and GPUs. After training, network definition files (“DNN def””
in Fig. 1) and trained weights are passed to the next step. To ensure
design freedom specified by users, the proposed flow supports arbi-
trary quantization schemes not only for functions within a layer
(e.g., CONV, Relu), but also for inputs across layers (e.g., different
weight/bias quantizations for layer i and i + 1) to explore tradeoffs
among inference accuracy, resource utilization, performance, etc.
One important feature of the Design step is that it receives feed-
backs from performance estimation (“P. estim.”) in Generation. If
the current DNN runs slower or consumes more resources than
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Figure 2: Accelerator architecture generated by DNNBuilder

expected, users could update their network designs, such as ad-
justing quantization schemes or modifying network layers to meet
performance requirements. With several iterations between Design
and Generation, the best network configuration can be developed
for the targeted FPGA. This feature makes the hardware-software
co-design possible.

In the Generation step, network parsing is the first process for
decomposing targeted DNNs from input network models (which
include network definitions in .prototxt and weight information in
.caffemodel when using Caffe). Different network layers, e.g. CONV,
Pooling, and FC layers, are decomposed and then mapped to our pre-
built RTL components. The computational intensive nested loops
are captured by parameterized PEs which are introduced in Sec. 5.1.
Automated optimization works for exploring design space and
balancing pipeline stages in DNNBuilder so that our design can
achieve maximum throughput performance. We propose an auto-
matic resource allocation scheme (details in Sec. 6) which generates
optimization guidelines for parameter adjustment of the pre-built
RTL components. Major elements in these guidelines include ker-
nel/channel parallel factors and buffer sizes, and they can be manu-
ally modified for expert users. Following the guidelines, network
construction is responsible for building DNN implementations
with the pre-built RTL network components, dataflow controller,
and memory instances, which are highly configurable to ensure the
adaptability and scalability for various DNNs. Code generation
generates accelerator related files for FPGA-based instances.

In the Execution step, the DNN accelerator is instantiated in FPGA
hardware platforms with unified interfaces including a FIFO-like
data input/output interface and a weight access interface connecting
off-chip memory controller. In this final step, the DNN accelerator
is ready for eventual deployment.

5 ACCELERATOR ARCHITECTURE DESIGN

DNNBuilder generates a pipeline structure where each pipeline
stage corresponds to each major neural network layer, like CONV
or FC layer, which dominates computation and memory consump-
tion. The rest of layers such as batch normalization (BN), scale,

and activation layers are aggregated to the major layers so that we
reduce the number of pipeline stages for lower latency. In Fig. 2, we
present two pipeline stages instantiated on FPGA for computing
two CONV layers (i and i + 1). This design consumes three types of
FPGA resources as the computation resources (blue area), on-chip
memory (green area), and external memory (orange area). Two dat-
apathes are generated for passing input feature maps horizontally
and trained weights vertically to the computation units. To main-
tain sufficient data supply, we setup two buffers for each pipeline
stage as the reshape buffer for keeping slices of input feature map
and the weight buffer for pumping in the trained weights from ex-
ternal memory. We define two parameters, the Channel Parallelism
Factor (CPF) and the Kernel Parallelism Factor (KPF). CPF and KPF
represent the number of input channels and the number of kernels,
respectively, which can be processed in one IP array (a group of RTL
network components) inside a pipeline stage. These two factors
allow DNNBuilder to implement a two-dimensional parallelism
scheme and adjust the resource utilization for each pipeline stage.
CPF and KPF are calculated by our resource allocation algorithm
which is discussed in Sec. 6. DNNBuilder supports flexible quanti-
zation schemes. As shown in Fig. 2, DW; is the input data bit-width
of the i-th layer while WW; represents the bit-width of weights.

5.1 Computation Engine Design

The core functions in DNNs are carried out by the auto-generated
RTL network components (e.g., CONV, FC, Pooling, BN, Relu, etc.)
which are the RTL IPs for building the whole network. Since the
same for-loop structure is frequently used in CONV and FC, we
abstract it as a processing engine (PE), which can be unfolded in two
dimensions corresponding to CPF and KPF. In our design, the CPF
and KPF work for unrolling input and output channels respectively.

Fig. 3 presents a detailed structure of the PE which is designed
for processing CPF number of input feature maps while the number
of PEs is decided by KPF. To better explain how the PE works,
we take a small-size CONV layer as a case study (notice that CPF
and KPF are power of 2 in real case for efficient hardware design).
Assuming there is a 4x3x3 input feature map in blue (the left side
of Fig. 3 (a)), it is processed by six 4x2x2 kernels with green color
(the middle of Fig. 3 (a)) with the channel/kernel parallel factors
as CPF=2 and KPF=3 (total parallel: 2x3=6). Since CPF=2 and the
kernel size is 2, a cube with 2 elements along X-, Y-, and Z-dimension
is considered as one tile. Each tile requires four steps of processing
following number (D) to @ because only one pixel in the X-Y plane
is processed every step. In each step, two pieces of data (along Z-
axis) from input feature maps (InFM) are collected (corresponding
to the CPF) and they are simultaneously processed by the first three
of the six kernels (corresponding to the KPF). In total, six multiply-
accumulates are executed in parallel (which equals to CPFXKPF),
and the first 3 partial sums (in orange) are generated. These partial
sums still need 4 more steps to complete calculation with the next
cube in input feature maps along the Z-axis (the second half along
the Z-axis surrounded by the dashed line). Fig. 3 (b) shows the
required input data of the PE in one step. Two elements (blue)
are fetched from input feature map while six elements (green) are
fetched from weights. The reshape buffer and weight buffer provide
these data respectively by one memory access. In this example, the
order of outputs is illustrated in Fig. 3 (c), following indexes from 1
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to 8. The first three kernels contribute output 1, 2, 5, and 6 while
the remainder three kernels generate the output 3, 4, 7, and 8. Fig.
3 (d) presents the multiply-accumulate operation in the PE with
CPF=2 and KPF=3.

Following the idea above, we can design RTL IPs with high-
performance and controllable resource overhead. As basic building
blocks, these high-quality RTL IPs fundamentally ensure the high-
performance design generated by DNNBuilder.

5.2 ON-Chip/Off-Chip Memory Management

In this section, we present two techniques to efficiently use the
scarce on-chip memory in FPGAs for keeping input feature maps
and buffering weight data.

5.2.1 Column-based cache scheme. For buffering input feature
maps, previous designs (e.g., [14] and [16]) have stored input feature
maps on chip to achieve higher throughput and avoid complicated
data movement. The size of their input images is relatively small
such as 256x256, 32x32, and 28%28 in ImageNet, Cifar100, and
MNIST, respectively. But images captured in real-life can easily
reach HD, like 1280x720. Although down-sampling may mitigate
the issue somewhat, it is not always acceptable, especially for the
small object detection. With the HD input, feature maps are enor-
mous and impossible to be stored on chip entirely.

To address this problem, we propose a novel column-based cache
scheme for only keeping a subset of the input feature map on
chip. Fig. 4 shows a convolution with kernel size=3 and stride=1.
Since slices 1~3 contribute to the first sliding window operation
(from top to bottom), we name the first three slices as column 1.
Similarly, column 2 represents the amount of data for the second
sliding window operation, so that slices 2~4 constitute the column 2.
DNNBuilder caches at least two columns before starting computing,
which allows the kernel to perform the second vertical sliding
window operation immediately after finishing the first one. Delay
caused by data shortage will not happen by caching one more
column. Meanwhile, slice 5 will start buffering to form the next
column (with slices 3~5) after releasing the room taken by slice 1.
In this example, the required size of the reshape buffer (shown in

Fig. 2) equals to the size of two columns (four slices). Since most of
the input images have fewer pixels in height than width, we buffer
slices in a column way to save on-chip memory. This scheme can
be easily extended to row-based processing if needed.

The column-based cache scheme can also effectively improve the
performance of layers with low computation-to-communication
(CTC) ratio, such as the FC layers, and the CONV layers with small
input feature map size. Unlike the previous work [10], which only
uses FPGA to accelerate CONV layers (with higher CTC ratio, less
memory intension than the FC layers), our solution can map the
whole neural network on FPGA and adaptively adjust the size of
reshape buffer to cache more or fewer columns for accelerating
layers with different CTC ratio. Details are described in Sec. 6.

5.2.2  Adaptive hierarchical memory system. To tolerate the delay
of off-chip data access, we design an adaptive hierarchical memory
system which can insert buffers between the computation-intensive
IP array and the external memory (shown in Fig. 2). The weight
buffers are implemented by dual-port RAMs in FPGA for continu-
ously buffering the weights from DRAM. Also, DNNBuilder pro-
vides optional ping-pong buffers at the input of each layer. Once
the required amount of weights exceed a certain threshold, these
data need to be stored off-chip so that ping-pong buffers are auto-
matically generated to overcome the data shortage problem when
fetching data from external memory. Conversely, when users de-
velop a low bit-width quantized DNN, the ping-pong will not be
generated as the size of required data is below the threshold.

6 AUTOMATIC RESOURCE ALLOCATION

One of the most critical problems in FPGA-based DNN implemen-
tation is the resource allocation under constraints while seeking for
the optimal performance. To address this problem, we propose an
automatic resource allocator for DNNBuilder, which can generate
parallel schemes (e.g., CPF and KFP for each layer) and data buffer-
ing guidelines (e.g., size of the reshape buffer) with considerations
of network complexity, external memory access bandwidth, and
data reuse behaviors.

6.1 Theoretical Guideline

Li= 0‘_ ZRI Riotal (1)
1
P=——— 2
max{L;} @
Ci Ci
Ri Ry R; ®)

The theory for maximum throughput performance of the pipeline
architecture can be found in Equation 1 to 3. L; represents the la-
tency of layer i, while the computation demand (computation com-
plexity) of layer i is C; and the computation resource consumed
by that layer is R;. Assuming the available resource is R4, the
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increase of allocated resource for each layer R; results in a propor-
tional increase in parallelism and eventually lowers the latency for
that layer (« is a constant of proportionality related to the hard-
ware working frequency). Since the generated accelerator uses a
pipeline architecture, the overall throughput depends on the layer
with the maximum computation time (Equation 2). We derive the
upper-bound of the throughput from Equation 3, which lists the
conditions for achieving the maximum throughput when workloads
for all pipeline stages are perfectly balanced. It gives us a theoretical
guideline to allocate computation resource for each layer.

6.2 Memory Bandwidth Adjustment

We use the roofline model [17] to intuitively illustrate the limi-
tation of memory bandwidth. In Fig. 5, memory access bandwidth
is represented by the slope. The area covered by blue is memory-
bounded where performance is determined by the memory access
latency under given CTC ratio. With lower CTC ratio, there is less
data reuse opportunities, which means more fresh data is required
to be fetched through memory interfaces to maintain GOPS. The
right-side gray area is computation-bounded with larger CTC ra-
tio, where performance is restricted by the available computation
resource because memory access bandwidth is not the bottleneck.
The optimal design locates at the top-left corner of the roofline
which achieves the maximum throughput (GOPS) with the least
bandwidth resource and CTC ratio required.

Our design intends to adjust the data reuse behavior of each
layer so that we change its CTC ratio. For buffering more columns
in the proposed column-based cache scheme (Sec. 5.2.1), we exploit
more data reuse opportunities, which means the higher CTC ratio
is achieved and it equivalently relaxes the dependency on memory
access bandwidth (with a smaller required slope). Eventually, we
place each DNN layer close to its optimal design spot and meet the
constraints of available bandwidth and on-chip memory.

The procedure of this adjustment is shown in Fig. 6. During the
first step, layer’s computation demand is satisfied by a prorated
allocation of the computation resource according to Equation 3,
and CTC ratio is determined based on the data reuse behavior of
each DNN layer. Here we mark three layers in the roofline model
in Fig. 6 (a). Bandwidth resources are first allocated to FC layers for

reaching their optimal design spot. We do not shrink their required
bandwidth since these layers highly depend on memory bandwidth,
and no data reuse can be exploited. If the bandwidth of targeted
FPGA is insufficient for FC layers, we need to use more aggressive
quantization (e.g., 8, 4 or even 2 bits) to represent the trained data.
In this case, DNNBuilder provides feedbacks from Generation to
Design step and updates the network definition, which can be found
in Fig. 1 “updating” arrow. After going through the Design step for
network retraining, we can avoid significant accuracy drop. We
then allocate the remainder memory bandwidth to CONV layers as
shown in Fig. 6 (b) (where the FC layer is omitted for conciseness). If
CONYV layers are memory-bounded as well (Fig. 6 (c)), it is necessary
to cache more columns for getting higher CTC ratio so that these
layers can be moved to the computation bounded area. In the other
case (Fig. 6 (d)), if the CONV layers are not memory-bounded but
the bandwidth is insufficient for them to reach their optimal design
spots, we adjust the layer with the highest bandwidth demand
(CONV iin our example) and shrink its bandwidth usage by caching
more columns of the corresponding feature map even though it
locates in the computation-bounded area already. As a result, the
CONV i (green marker) is moved to the right and providing a
bandwidth drop (smaller slope). In summary, both Fig. 6 (c) and (d)
introduce bandwidth drop but they focus on two different scenarios.

6.3 Allocation Algorithm in DNNBuilder

To sum up the idea in Sec. 6.1 and 6.2, we present a resource
allocation algorithm running in DNNBuilder. First, it starts allo-
cating the computation resource shown in Algorithm 1. Since the
parallelism factors must be the power of 2, DNNBuilder further
fine-tunes the allocation scheme and fills up the gap between actual
and the theoretical value (line 5~line 11). Resource allocated for
layer i is represented as R;, which is also the product of CPF; and
KPF;. Eventually, DNNBuilder generates parallelism guidelines for
building IP instantiations.

In step two, Algorithm 2 allocates the memory bandwidth re-
source given the constraints of total remainder bandwidth BWtcoot'(’;l’
for CONV layers (subtracted the bandwidth consumed by FC lay-
ers) and the total amount of remainder on-chip memory mem;s ral
for reshape buffers to keep feature maps (subtracted the memory
occupied by weights buffers and reshape buffers in FC layers).

We initialize Col; = 1 (caching one column of the input feature
map) and the reshape buffer is implemented by a dual-port RAM
with the width of read/write port widthird, width}wr, and the depth

of read port depth; 4in i-th layer, which can be referred to Fig.
2.In line 5, Algorithm 2 first satisfies the bandwidth demands of
allocated computation resources. PF; represents the parallel factor,
which is equal to R;. If the required memory bandwidth exceeds
the total available bandwidth, we need bandwidth adjustment (line
6 ~ line 16). It intends to address the problem shown in Fig. 6 (c)
where the layer is in the memory-bounded area and (d) where
particular layers excessively consume bandwidth resource. Since
the microarchitecture of on-chip memory is significantly different
between FPGAs, e.g., RAM18K/36K in Xilinx and M20K in Intel, we
use a unified function f shown in line 9 to calculate the number of
occupied memory blocks. In this algorithm, H’ l”’ Hlf’”t and Stride;
represent the height of input and output feature maps and the
stride in layer i. Cf" and CY*! represent the number of channels



Algorithm 1 Computation resource allocation

1: Set available computation resource: Ryoz4; //total DSPs
2: Computation resource for layer i following Equations (1)-(3):

C, . . .
R; = C_talta_l X Riotaql /1# of DSPs for layer i

: Initialize allocated resource for i-th layer (parallelism factor):
. R; = 2lloga Ril

: while Z?:]Ri < Rsotal

. . Cj
Select layer j with maximum R—j

3
4
5
6
7. if X R +2XRj < Rypsa1

8: Rj = 2 X Rj //double the resource for layer j
9:  else break

10:  endif

11: endwhile

12: R; = CPF; X KPF;

*CPF, and KPF are power of 2 for efficient hardware implementation

Algorithm 2 Memory bandwidth resource allocation

: Set available memory bandwidth: BW:°"%
otal

: Set available on-chip memory for input feature map: mem

: Set single DSP’s bandwidth usage: BWg

: Initialize Col; = 1; size of reshape buffer (e.g. widthird, depthird, and
width}'" according to KPF; and CPF;)

5: Allocate bandwidth BW; for layer i to best satisfy its R; demand:

rb
total

W =

_ PFixBWR
BWi = fitCor;
6: while 37, BW; > BWtCOOt';ZI’ //CONYV layer bandwidth overuse

7:  Select layer i in CONV layer with maximum BW;
HI"xCinxStride; HPUIxCout

. rd, _ Ti T TOTRACD rd . _ i C&i
8: depth]®+ = CPF; ,depthl i+ = PP

) . n - rd rd - wr rb

9 if XL, f(width{®, depth®, width}'") < mem] ,
10: Col; = Col; + 1 //Cache one more column

Colj-1

. - _ ¢ Coli—1

1 BW; = BW; x <847

12 else //restore if not enough memory
in ~in S i
) rd_ _ H{"xC;"xStride;
13 depth]®—= CPF;
14:  endif
15:_endwhile

HOUutxCout

rd _ _
,depthiﬂ—— PP , break

Table 1: Top-1 Accuracy for image classification

Network | Float32 | Fix16 | Fix16+f-t.in Design | Fix8 | Fix8+f.-t. in Design

Alexnet | 55.7% | 53.3% 55.1% (0.6% 1) 51.6% | 534% (2.3% )

ZF 58.0% | 56.3% 57.6% (04% | ) 54.2% | 56.2% (1.8% 1)

VGG16 68.3% 67.0% 69.3% (1.0% T) 63.7% 69.2% (0.9% T)

Table 2: Accuracy for object detection (AP@IOU=0.5)

Network Precision Car Pedestrian | Cyclist mAP

YOLO . F]Oﬁt?Z i 88.9% 64.9% 72.5% 75.5%
(HD) Fl.xl6+f,-tA in Design | 88.9% 65.0% 73.2% 75.7% (0.2% T)
Fix8+f-t. in Design 88.9% 65.2% 72.6% 75.6% (0.1% T)

of the input and output feature map in layer i, respectively. Col;
represents the number of cached columns in layer i which relates
to the kernel reuse behavior (CTC ratio) and the consumption of
on-chip memory mem;.
7 EXPERIMENTAL RESULTS

In this section, we demonstrate the capability and scalability of
DNNBuilder by mapping four DNNs onto two FPGAs (XC7Z045
in Xilinx ZC706, KU115 in AlphaData 8K5) for running edge and
cloud applications. We use a Yokogawa WT310 digital power meter
to measure the power consumption.

7.1 DNN Models in Case Study

We build four DNNs using DNNBuilder, which include Alexnet
[18], ZF [19], VGG16 [20] and YOLO [21]. The ZF and VGG16
are trained on ImageNet dataset [22] with input size 224x224, and
Alexnet is trained on ImageNet but uses 227x227 inputs. For VGG16,

YOLO accelerator nning on
ZC706 for real-time detection

Figure 7: Accelerator for real-time car/pedestrian/cyclist de-
tection generated by DNNBuilder

to fit in our embedded FPGA (ZC706) and meet the real-time re-
quirement, we have to cut off half of the kernels of CONV layers
(except the CONV5) and half of the activations in FC layers. The
weights of the FC layers are quantized to 4 bits to reserve mem-
ory bandwidth for CONV layers according to the feedbacks from
Generation step. For the implementation in KU115 FPGA, we use
the original VGG network structure without pruning. Accuracy
results are shown in Table 1, where column “Float32” means using
float32 model without quantization. “Fix16” and “Fix8” show the
results of quantized models using 16-bit and 8-bit feature maps and
weights without retraining. “f.-t. in Design” represents the accuracy
results are collected after retraining and fine-tuning (such as ad-
justing the quantization following Sec. 6) in the Design step. The
quantized models may also introduce regularizations, which causes
the 1.0% accuracy increase in VGG16 even compared to the original
Float32 version. Regarding the YOLO network, we modify it from
the YOLO-tiny model, which is originally designed for 416x416 in-
put resolution, and adapt it to the KITTI dataset [23] with 1280x384
HD input. Due to the hardware constraint, we change the kernel
number of CONV7 and CONV8 from 1024 to 512 to target the real-
time detection capability. We choose this model to demonstrate the
scalability of DNNBuilder for handling HD inputs. We use 80% of
the KITTI provided dataset for training set and the remainder for
validation set to perform car, pedestrian, and cyclist detection and
show the accuracy results in Table 2. We use IOU=0.5 as the thresh-
old to identify true positive cases and mAP to represent the mean
average precision of the car, pedestrian, and cyclist categories.

7.2 FPGA Mapping Results

These four DNNs are automatically deployed and optimized fol-
lowing the whole design flow of DNNBuilder. After synthesis by
Vivado 2016.4, placement and routing are completed subsequently
showing resource utilization and performance in Table 3 and 4. We
achieve 200 MHz working frequency in the Zynq XC7Z045 (28nm)
and 220-235MHz in KU115 (20nm) without any sophisticated tim-
ing adjustment. The Batch per Die in Table 4 shows the batch size
of Fix16 version in one die of the KU115 FPGA (two dies in total)
and we keep the same design in both dies. For the Fix8 version, the
performance could be doubled by packing two activations together
according to [24]. In summary, DNNBuilder can generate DNN
hardware accelerators with performances peaking at 526 GOPS in
an embedded FPGA and 4218 GOPS in a high-end FPGA.

Since DSP is one of the most critical resources of FPGA-based
DNN accelerators, we need to carefully evaluate the utilization
efficiency of the DSPs. Therefore, we introduce the DSP efficiency
to exhibit the ratio between actual and theoretical maximum per-
formance of the allocated DSPs. It is defined as:

Per formance
P X DSP_num X freq.

DSP_ef ficiency = (4)



Table 3: Evaluation on Xilinx ZC706 (Zynq XC7Z045@200MHz, batch size=1 for Fix16, batch size=2 for Fix8)

Network Utilization Complexity | Throughput | GOPS | Throughput | GOPS DSP
LUT (218600) | FF (437200) | BRAM (545) | DSP (900) (GOP) Fix16 (img./s) | Fix16 | Fix8 (img./s) Fix8 Efficiency

Alexnet 86262(39%) | 51378(12%) |  303(56%) 308(90%) 145 170.0 247 340.0 194 76.3%

ZF 87465(40%) | 50853(12%) | 333(61%) 824(92%) 2.34 112.2 263 224.4 526 79.7%

VGG16 (pruned) | 114521(52%) | 61189(14%) | 542(99%) 630(76%) 9.45 277 262 554 524 96.2%

YOLO (HD) 36103(39%) | 48853(11%) | 333(61%) | 680(76%) 106 221 234 12 68 36.0%

Table 4: Evaluation on AlphaData 8K5 (Xilinx KU115 FPGA, batch size double for Fix8)
Network Utilization Batch | Complexity | Freq. Throughput | GOPS | Throughput | GOPS DSpP
LUT (663360) | FF(1326720) | BRAM (2160) | DSP (5520) | per Die (GOP) (MHz) | Fix16 (img./s) | Fix16 | Fix8 (img./s) Fix8 Efficiency

Alexnet 262360(40%) | 177146(13%) 986(46%) 1854(38%) 3 145 220 1126 1633 2252 3265 76.4%
ZF 268242(40%) | 186198(14%) |  1162(54%) 1950(90%) 3 234 225 759 1776 1518 3552 79.7%
VGG16 257862(39%) | 171616(13%) |  1578(31%) 1318(78%) i 30.94 235 65 2011 130 1022 99.1%
YOLO (HD) | 262356(40%) | 165601(13%) | 1256(63%) 5286(96%) 1 106 220 199 2109 398 4218 90.7%
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Since § multiply-accumulate operations (=2 in Fix16, f=4 in Fix8)
can be handled by one DSP and corresponding logics in one cycle,
the denominator equals to the theoretical best performance pro-
vided by allocated DSPs under a given frequency. The numerator
means the actual achieved performance (GOPS) as shown in Table
3 and 4. Following Equation 4, VGG16 accelerator achieves the
highest DSP efficiency, which is followed by designs for YOLO and
ZF, while Alexnet accelerator is in the last place. The reason is that
VGG16 has unified CONV (3x3 with stride 1) and pooling pattern
(2x2 with stride 2), which makes Equation (3) perfectly satisfied
under the constraints that R; is a power of 2. The more balanced
for the latency of each layer, the higher DSP efficiency is achieved.
7.3 Latency and On-chip Memory Analysis

We take the DNNBuilder generated YOLO accelerator (Fix16) as
a case study. In Fig. 7, a real-time detection for HD video input is
running on the ZC706. The input video frame with HD resolution

(1280x384) is captured by a wide-angle camera and sent to the
FPGA at 20 FPS (meaning the frame transmission delay is 50ms). In
Table 3, this YOLO accelerator achieves a throughput at 22.1 FPS,
which is enough for processing the 20 FPS video. Since the proposed
fine-grained pipeline architecture and column-based cache scheme
are applied, accelerator is launched once the first few columns of
input frame are ready (in the reshape buffer). In Fig. 8, the startup
latency is 9.92ms. After 9.92ms, CONV9 keeps generating outputs
until 9.04ms after the first frame is fully loaded, so we call this
period “output time-slot” which lasts 50+9.04-9.92=49.12ms. This
accelerator utilizes 137 BRAMs for keeping columns of feature
maps and 333 BRAMs (Table 3) for the whole accelerator. Since four
pedestrians are shown in this frame, they are detected one after
another from left to right during the“output time-slot".

The advantage of using the proposed fine-grained layer-based
pipeline architecture is that we can hide the data transmission de-
lay (generating outputs when the 1st frame is still loading), and
deliver a small startup latency (which is 9.92ms in this case). De-
tailed comparisons are shown in Fig. 9. The length of each rectangle
represents the latency of one major network layer. The conven-
tional pipeline architecture (right), with the same 20 FPS overall
throughput, waits for the finish of all frame and feature map trans-
missions at preceding stages so that it suffers a very long latency
as 457.24ms for generating all results of the first frame. Conversely,
our proposed design starts running layer i + 1 pipeline stage af-
ter we collect several columns of output feature maps of layer i.
So, we deliver the latency as 59.04ms, which achieves an amazing
7.7x reduction. The advantage of using column-based cache can
be shown in Fig. 10. We significantly reduce the required BRAM
for keeping DNN feature maps. In total, we instantiate only 137
BRAMs in our YOLO accelerator instead of 5920 BRAMs in the
conventional pipeline design where feature maps need to be stored
completely using on-chip memory. The overall BRAM reduction
is 5920 + 137 = 43x while the best case happens in the first layer
with 320x reduction achieved. The proposed column-based cache
ensures the scalability of our accelerator design while using HD
or even 4K inputs. It is the fine-grained layer-based pipeline struc-
ture and column-based cache that help us reduce startup latency
and BRAM utilization which are common shortcomings in pipeline
structures, and hide the video frame transmission time. As a result,
DNNBuilder can deliver millisecond-scale response during object
detection and accommodate inputs with high resolutions.

7.4 Comparison to FPGA & GPU Accelerators
We compare our design to five latest FPGA-based accelerators
with classification-oriented DNNSs in Table 5. For Intel FPGA, the
actual DSP utilization in [5] and [10] should be twice as shown
in the original paper because one variable-precision DSP block




Table 5: Comparison with existing FPGA-based DNN accelerators

Reference [5] [ [6] [ [10] | DNNBuilder [1] [ [2] [ DNNBuilder
Categories Cloud-computing platforms Edge-computing platforms
FPGA chip Arrial0-1150 | Arrial0-1150 Stratix-V GXA7 + CPU KU115 Zynq XC77045 | Zynq XC7Z2045 | Zynq XC77045
Frequency 303 MHz 385 MHz 200 MHz & 2~3 GHz(CPU) 235 MHz 150 MHz 100 MHz 200MHz
Network Alexnet VGG Alexnet VGG VGG VGG VGG
Precision Float16 Fix16 Fix16 in FPGA Fix16 (Fix8) Fix16 Fix16 Fix16 (Fix8)
DSPs (used/total) 2952/3036 2756/3036 512/512 in FPGA 4318/5520 780/900 824/900 680/900
DSP Efficiency 77.3% 84.3% - 99.1% 44.0% 69.6% 96.2%
Performance (GOPS) 1382 1790 781 2011 (4022) 137 230 262 (524)
Power Efficiency (GOPS/W) 30.7 47.8 - 90.2 (180.4) 14.2 24.4 36.4 (72.8)
Table 6: Alexnet inference com ‘;{11501]11: GPI; vs FP(::‘; that not only provides optimal implementations of diversified DNN
. roughput ower ciency . .
Platform Precision | Batch (img./S) W) | (img./s/W) layers but also gllows us to adjust th'e para}lel{sm factors (CPFS
DNNBuilder (ZC706) | Fix16,Fix8 | 1,2 170, 340 7.2 23.6,47.2 and KPFs) to fit in the resource allocation guidelines. We designed
GPU-TX2[26] Float16 2 250 107 33 an automatic resource allocation algorithm to enable design space
[ DNNBuilder (KU115) | Fix16,Fix8 | 3,6 | 11262252 | 229 [ 492983 exploration and generate parallelism schemes under constraints
[ GPU-TitanX | Float32 | 128 | 5120 [ 2270 | 226

can simultaneously work for two 16-bit multipliers [25]. For the
cloud-computing case, the DNNBuilder generated design achieves
4022 GOPS using KU115 FPGA. Our design with Fix8 quantization
outperforms those in [5], [6], and [10] by 2.91x, 2.25x%, and 5.15x,
while our Fix16 version outperforms them by 1.46x, 1.12x, and
2.57x respectively. Although our design uses more DSPs, we deliver
the highest DSP efficiency (99.1%) which allows us to slow down
the clock frequency for achieving 5.88x higher power efficiency
compared to [5]. The design in [10] deploys a DNN accelerator on a
Xeon CPU+FPGA system, and reduces the number of computation
by using frequency domain CONV. Layers with low CTC ratio
(e.g., FC layers, which are limited by memory access bandwidth
on FPGAs) are swapped out to CPU using QPI. Since we can not
quantify the equivalent DSP utilization in CPU and the authors fail
to mention any power consumptions (which should be the sum of
CPU+FPGA), we leave the DSP and power efficiency blank for [10].
Major drawbacks of [10] are the large batch size requirement and
the resulting high demand for FPGA on-chip memory. It requires
large batch size to recover the input padding overhead and the
low data reuse behavior while running CONV in the frequency
domain. Design in [10] may not be feasible for using embedded
FPGAs. On the contrary, DNNBuilder can deliver high-performance
DNN accelerators on both high-end FPGAs and energy-eflicient
embedded FPGAs for cloud and edge applications. By evaluating
the edge-computing ability, we use the same embedded FPGA in
[1] and [2]. Our DNNBuilder generated design reaches the best
performance (524 and 262 GOPS in Fix8 and Fix16) and power
efficiency (72.8 GOPS/W in Fix8 and 36.4 GOPS/W in Fix16).

We extend our comparison to the latest embedded GPU (TX2)
and the high-end GPU (TitanX) in Table 6. Because of the real-time
requirement of edge-applications, we attempt to use the smallest
batch size. However, the result of TX2 is using a batch size of 2,
which is the smallest batch size implementation we could find from
Nvidia’s official source. Our design in ZC706 delivers higher ef-
ficiency than the TX2-based solution even without using batch
processing. Our design (Fix8) in KU115 delivers 4.35x higher effi-
ciency than the TitanX-based solution (Float32) with a much smaller
batch size.

8 CONCLUSION

In this paper, we presented DNNBuilder, an automation tool
for building DNN hardware accelerators on FPGAs, for delivering
high performance and power efficiency. We proposed a fine-grained
layer-based pipeline architecture and a column-based cache scheme
for higher throughput, lower pipeline latency, and smaller on-chip
memory consumption. We introduced the flexible process engine

of computation resource, on-chip memory capacity, and external
memory access bandwidth. Because of the above novel designs,
we reached the highest throughput performance peaking at 4218
GOPS (KU115) and 526 GOPS (ZC706) compared to the existing
FPGA/embedded FPGA based solutions. We also achieved higher
efficiency (up to 4.35x) than the GPU based solutions.
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